Modeling Geometric Non-linearities in the Free Vibration of a Planar Beam Flexure with a Tip Mass

نویسندگان

  • Hamid Moeenfard
  • Shorya Awtar
چکیده

The objective of this work is to analytically study the nonlinear dynamics of beam flexures with a tip mass undergoing large deflections. Hamilton’s principal is utilized to derive the equations governing the non-linear vibrations of the cantilever beam and the associated boundary conditions. Then, using a single mode approximation, these non-linear partial differential equations are reduced to two coupled non-linear ordinary differential equations. These equations are solved analytically using combination of the method of multiple time scales and homotopy perturbation analysis. Parametric analytical expressions are presented for the time domain response of the beam around and far from its internal resonance state. These analytical results are compared with numerical ones to validate the accuracy of the proposed closed-form model. We expect that the qualitative and quantitative knowledge resulting from this effort will ultimately allow the analysis, optimization, and synthesis of flexure mechanisms for improved dynamic performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of E...

متن کامل

Design and Dynamic Modeling of Planar Parallel Micro-Positioning Platform Mechanism with Flexible Links Based on Euler Bernoulli Beam Theory

This paper presents the dynamic modeling and design of micro motion compliant parallel mechanism with flexible intermediate links and rigid moving platform. Modeling of mechanism is described with closed kinematic loops and the dynamic equations are derived using Lagrange multipliers and Kane’s methods. Euler-Bernoulli beam theory is considered for modeling the intermediate flexible link. Based...

متن کامل

Extended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams

In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

Implementing Basic Displacement Function to Analyze Free Vibration Rotation of Non-Prismatic Euler-Bernoulli Beams

Rotating beams have been considerably appealing to engineers and designers of complex structures i.e. aircraft’s propeller and windmill turbines. In this paper, a new flexibility-based method is proposed for the dynamic analysis of rotating non-prismatic Euler-Bernoulli beams. The flexibility basis of the method ensures the true satisfaction of equilibrium equations at any interior point of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012